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The description of the macroscopic magnetization of an arbitrary sample is first reduced
to the calculation of two similar magnetic-moment autocorrelation functions G(t). The nature
of the dynamical evolution of the magnetic-moment operator m (t) needed in these correlation
functions is then expressed in terms of an infinite set of time-independent orthogonal vectors
in a generalized Hilbert space, such that the desired correlations are just the projection of
the evolving magnetic-moment operator onto the first of the orthogonal vectors. Equations of
motion of the coefficients of the expansion are obtained and formally solved in Laplace-trans-
form form, yielding the transform of G() as a ratio of infinite-order determinants. The
formalism is related to the procedures of Zwanzig and Mori and, more generally, to the
“classical moment problem ” of mathematical analysis. Various practical approximations

to the rigorous results are examined.

I. INTRODUCTION

The importance of time-correlation functions
in the study of nuclear magnetic resonance (NMR)
was first brought out, through a linear-response
theory, by Kubo and Tomita.!? Since then, the
same approach has been widely applied in non-
equilibrium statistical mechanics, providing a
rigorous connection between the macroscopic
transport coefficients of phenomenological theories
and the microscopic molecular properties.® Sev-
eral general techniques, having the necessary fea-
ture of treating the many-body dynamical calcula-
tion as an initial-value problem, have been devised
for the calculation of the autocorrelation func-
tions. * The earliest of these is based on an infi-
nite-order perturbation expansion, with selective
resummation, developed by van Hove® and
Prigogine.® Later, a mathematically much less
formidable approach was devised by Zwanzig, "
using many-body projection operators to select
out only the “relevant” information contained in
the full dynamical expressions. More recently,
Mori® has generalized the projection-operator
technique and has obtained an expression for the
Laplace transform of an autocorrelation function
in the form of a continued fraction. A method re-
lated to the latter two is that of Kadanoff and
Martin, ® who approach the problem through the
generalized susceptibility.

In the present paper, we apply a new general
technique for time-correlation functions to the
calculation of the line shape in NMR spectra. This
approach, previously employed in the calculation
of the van Hove correlation function of classical
fluids, '° is closely related to those of Zwanzig’
and Mori. ®

The formalism developed here is quite general,
although the determination of the NMR line shapes
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is of particular interest for the so-called “broad-
line” spectra of solids. This is especially so since
the discovery by Lowe and Norberg!! of relatively
large oscillations in the F!® free-induction-decay
(fid) curves from calcium fluoride. These oscil-
lations were clear evidence that the assumption of
a Gaussian line shape was not, in general, valid,
stimulating further investigations into the detailed
NMR line shape.

These latter developments fall generally into
one of three categories: (i) direct evaluation of
the time autocorrelation function of the transverse
magnetization by various methods of approxima-
tion; (ii) expansion theorems based on a knowledge
of the first few moments of the line shape; and
(iii) approximate expressions for the autocorrela-
tion function or the associated memory function
based on the general techniques mentioned before.

Direct evaluation of the autocorrelation function
has received considerable attention since the
original work of Lowe and Norberg.!! They and
others!?~!8 have shown that this method is capable
of giving good agreement with experiment for short
times, i.e., for most of the normally observed fid.
However, calcium fluoride fid data taken by Lowe,
Bruce, Kessemeier, and Gara'® for comparatively
longer times have shown behavior that is qualitative-
ly different from that predicted by this method.

An alternative procedure is the development of
expansion theorems which express the fid curve
in terms of known functions incorporating the first
few moments of the line shape. The elementary
example of this is the moment expansion itself,
which—since in practice only the first two even
moments are generally known—is quite inadequate
for all but very short times. A practical alterna-
tive, however, is provided by the Neumann-
Gegenbauer expansions of the fid curve. ?® 1t has
been shown® that these expansions can be used to
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give a very good representation of the short-time
behavior of the calcium fluoride fid curves, using
only the second and fourth moments. However, in
order to predict the long-time behavior using these
expansions, a knowledge of more than just these
moments is required.

The third procedure is based on equations re-
lating the fid function and its associated memory
function. #~% These results will be discussed
further in the body of the paper.

This work is divided into three main parts.
Beginning with the linear-response approximation,
the microstate formulas needed for the macro-
scopic description are systematically developed
in Sec. II in a very general fashion. No new re-
sults are obtained in Sec. II; the material is pre-
sented principally for the sake of completeness.
The prediction of the macroscopic magnetization
is, in this section, reduced to the calculation of
two autocorrelation functions of the same general
form. Section III is devoted to a general study
of such autocorrelation functions, based on an
orthogonal expansion of the dynamical quantity.
This approach is seen to be closely related to the
methods of Zwanzig’ and Mori, ® and, more gen-
erally, to the so-called classical moment prob-
lem in mathematical analysis, ® which is intimately
connected with the general theory of orthogonal
polynomials. Finally, various approximations in
the general formalism, which yield practical re-
sults suitable for computation, are examined in
Sec. IV.

II. FORMULATION OF PROBLEM
A. Statistical Description

In a characteristic NMR experiment, a sample
of magnetic material is placed in a large static
magnetic field H, and allowed to come to equilib-
rium. Because of the external field, the sample
will then possess a constant induced magnetiza-
tion My, With the equilibrium state having been
thus prepared, a weak oscillatory magnetic field
H,(¢) transverse to H, is switched on, at a time
conventionally labeled #=0, and the resulting
steady-state response of the sample magnetiza-
tion M(t) to the perturbing field H,(¢) is determined.
More precisely, one measures the line shape of
the power absorption from the external field.

In the following paragraphs, we shall follow the
outline of this experiment in determining the basic
expressions needed for a theoretical analysis of
the experimental outcome.

We consider, then, a macroscopic system,
which may be a solid, liquid, or gas, made up of
a large number N of molecules and contained in
the volume V at the temperature T'= (kg B)", where
kp is Boltzmann’s constant. For the sake of sim-

1407

plicity, this study will be restricted to systems of
identical molecules, each molecule being charac-
terized by a single species of nuclear spin I. The
spins in the system may be indexed with a sub-
script s; the corresponding magnetic moments are
then

Y 2% A (2.1)

where vy is the gyromagnetic ratio.

In principle, the task of determining the macro-
scopic properties of this system involves a
straightforward quantum-mechanical calculation
for which just the complete Hamiltonian of the
system is needed. For present purposes, it is
not necessary to specify this operator beyond its
dependence on the external fields, and we write

for the total Hamiltonian
Jep (H)=3c+3¢'(t), t>0 (2.2)

where 3C'(f) is the perturbation due to the oscil-
lating field H,(z),

M(t)'_‘ -Z)s Es 'ﬁl(t) ’

and 3C is the equilibrium Hamiltonian.
operator in turn is written

(2.3)
This latter

Je=3C, +3C, , (2.4)
where
¥, = "Es ;Is' I_'TO (2.5)

is the Zeeman energy, and JC; is the Hamiltonian
of the completely isolated system. The operator
3y, containing contributions from both the spin
and molecular degrees of freedom, can for the
moment remain unspecified. We shall later need
to make a general assumption about the invariance
properties of 3C,, but since specific calculations
will not be made we will not need an explicit form
of this operator.

To obtain the measured properties of the sys-
tem, one must then solve the time-dependent
Schrédinger equation for the wave function #(¢) of
the system at all times. This equation, however,
is of first order in time, so that a final specifica-
tion of P(#) (assuming a solution could be found)
requires a knowledge of the initial wave function
$(0). Since this information is, in general, not
available —all one knows is that the system has
been prepared in a state of macroscopic equilib-
rium—it is at this point that a statistical description
must enter. For this, one needs the statistical
density operator p(¢), in terms of which the average
behavior of the observable which corresponds to
the Hermitian operator A is given by

A®))=Tr{pt)A} . (2.6)

The density operator also satisfies an equation that
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is of first order in time, namely, the quantum-
mechanical Liouville equation

in 280 - fsc.ae/ (), (o) (2.7)
which, needless to say, is no easier to solve than
the Schrodinger equation from which it is obtained.
But the initial value p(0) is now a known quantity.
Since the sample was prepared in thermal equi-
librium at the temperature T, p(0) is just the

canonical density operator
p(0)=(1/2) e,

Z=Tre®™

(2.8)
(2.9)

where C is the equilibrium Hamiltonian, Eq. (2.4).
That is, a statistical assumption is made only for
the initial state of the system; its dynamical
evolution is still governed by the total Hamiltonian
o).

B. Linear Response and Magnetization

An explicit solution of Egs. (2.7) and (2. 8) for
the dynamical evolution of the density operator
p(#) is not possible. However, a formal solution,
that is, one which leaves the dynamical calcula-
tions implicit and still to be performed, can be
easily obtained. To do so, we rewrite (2.7) in the
form

in :_t_{eltsc/np(t) e"m/"}ze“"c/“[gc’(t), p(t)] e-ite/n ,
(2.10)

and integrate both sides from 0 to #. After trans-
posing the exponential operators, we arrive at an
integral equation for p(¢), namely,

p)=p(0) = Gi/m) [ * ar’ o' -/
x[3' @), p(t')] et -0%/" | (2.11)
or, with the explicit form of 5¢’'(¢) from (2. 3)

plt) = p(0) + i/) [ at' e =0/

x [Hy(t") - B, p(t")] e -%/* | (2.12)
where we have pﬁt, for brevity,
=20, (2.13)

Equation (2. 12) can be formally solved by iteration,
producing a functional expansion of p(f) in powers

of ﬁl(t),
p(t)=p(0)+/m [ " at’ [y(e") - (e’ - ), p(0)]

+(z'/iz)2fo‘dt'fo" at" [H(¢) - T 1),
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[H,¢") 5@ -1),p0)]]+. .

In obtaining (2. 14), we have used the fact that
e''®/" commutes with p(0) and have introduced the
Heisenberg operator

- S
u(t)=e‘ml L emit/n ,

(2.14)

(2.15)

which describes the time evolution of the spin op-
erators. One now uses the presumed smallness
of H,(?) to justify neglect of all terms in (2.14)
beyond the linear one, so that (2. 14) is approxi-
mated by

p()=p(0)+/m) [ at' [Fy(t)- B¢’ -1),p(0)] . (2.16)

This is the linear-response approximation, ! and
its use, as is well known, will restrict the en-
suing formalism to situations far removed from
saturation.

The central quantity we wish to determine is the
net sample magnetization M(¢), which, in terms
of an ensemble average, is given by

M(t)=1/v) Tr{p(OL} . (2.17)

In using the linear approximation (2. 16), one as-
sumes the response is strictly proportional to the
perturbing field

Mi(t) = M,y + (i/5V) fo Yar T {[H,¢") B¢ -1),p0)1E},

(2.18)
where

M,=M(0)=(1/v) Tr{p(0) i} .

As noted, this assumption breaks down near satura-
tion.

Because the trace of a product of operators is
invariant to a cyclic permutation of the operators,
(2.18) may be rewritten in the form

(2.19)

W(0) = 8o~ G/nv) [ ar' ([ @)+ BO), Bt -11])
(2. 20)

or, in component notation and after a change in
integration variable from ¢ —¢’ to ¢/,

Mo(t) =Moo = /1) Ty [} at’ Hiplt = 1) ([15(0), 1a(e)])

(2.21)

Alternatively, the commutator in (2. 18) may be
formally eliminated using a technique due to
Kubo. & Using (2. 8), we have

[1s(®), p(0)]= p(0){e®™ 1, (t) ™8 = y(2) }

8 d X3¢ =AJC
= p(0) f ax (e (1)}
0
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8
= —i7ip(0) diit— are™™ 1y (t) e
0

d ()

= —i7ipp(0) ar ’

(2.22)
where the equivalence of d/d) and —37#(d/dt) fol-
lows from the similar role played by A and ¢/7 in
these expressions [cf. (2.15)]. The last equality
in (2. 22) defines the Kubo transform p,(¢) of
up(). In general,

A-1/p) [ Pan e e (2.23)
defines the Kubo transform of the operator A. If
A commutes with 3¢, then obviously A=A. This
equality also holds approximately in the noncom-
muting case at high temperatures. Using (2.22) in
(2.18) we get for the magnetization of the sample

t
M,(t)=Mq, - '5— Zb> j(; dt' Hy(t —1') Edt‘T (5(0) pglt”)) -

(2. 24)

Thus, we find that in the linear-response approx-
imation the calculation of the time-dependent mag-
netization reduces to a knowledge of the correlation
tensor (11,(0) u(2)).

C. Relaxation and Response Functions

The function (i, (0)u,(f)) describes the extent to
which the value of p, at time ¢ is connected to the
initial value of 11,. For very large separations in
time, it is expected on physical grounds that this
connection should be negligible; that is,

}ifri (0 1o (#) ) = (125(0) ) a(®))

={1p) (ko)

=VeMpMq, . (2. 25)

Define now

Fop(8)= (1/V) (1 (0) g (8)) = (1/ V) (i) { g )

= (1/V) (my(0ym,(2)) , (2. 26)

where m, is a magnetic-moment fluctuation

Me= g = Ky (2.27)

Evidently, F,,(t), called the relaxation tensor,
becomes negligible with increasing time. It de-
scribes the relaxation of the spins from an initial
nonequilibrium state.

With the further definition

Ra0)= B2 Foult) , (2. 28)

GENERAL APPROACH TO THE LINE-SHAPE PROBLEM...
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(2. 24) may be written
M, () =My, + 2 f: dt' Ryt VHy(t-1") . (2.29)

The physical meaning of R,,(¢) may be inferred
from this equation. The magnetization M,(¢f) at
time ¢ responds not only to the perturbing field at
that time, but also, through the spin interactions,
to values of the field at earlier times which left
their effect in the microscopic spin states. This
indirect response is described by Ry, (¢ —¢'), known
as the response tensor, which gives in effect the
weight to be assigned to the field at ¢’ in computing
the magnetization at . Like F,,(¢), the response
tensor will become negligible for large separations
in time.

D. Time-Correlation Functions G, (¢) and Related Functions

In this section, we will establish several general
properties of the relaxation tensor

Fo()=(1/8Y) [ ax Tr{p(0)e ™ m,e™* ' /M moet*/"}
(2. 30)

By cyclic permutation of the operators under the
trace and a change in integration variable from
A to B-2, the definition yields

F.(t)=(1/8V) fOB A Tr{p(0)e - Wy, o~ B-13%

X e-mc/nmb emc/n}

= (1/8V) [} ax Tr{p(0)e®m, e my (- 1)}

= (1/V)(m,(0hmy(—2)) =Fp(-28) . (2.31)

The diagonal elements are thus even in time.
Furthermore, by choosing eigenfunctions of 3C to
write out the trace explicitly, we get

dn Y eBEn gMEn-Ey)

1 B
Fg(t)= 3z fo =

x e-it(En'Ek’/"(nlm,,|k)(klmaln)

1 8
- dn 2 {ePEr o B-M) (B, -Ep)
3VZ 0 nyk {
x e-it(Ek-En)/ﬂ (k|m,,|n) <n|malk>}*
=F%@) , (2.32)

where the asterisk denotes complex conjugate.

Thus, all the elements of F,,(f) are real, as was

to be expected since they are measurable quantities.
Additional symmetries of F,,(t) can be found by
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considering rotations in space generated by the
unitary operator

U(76) = e7tirio/

where J is the total angular momentum of the
system

EEEDIN 2372 D8 h’-fs .

Here j runs over the particles that make up the
system. In (2.33), n is the axis of rotation and 6
is the angle turned. The necessary requirement
for establishing the symmetries is that 3C=3Cy+3C,
be invariant under rotation

U@0)35eUno) =53¢ .

(2.34)

(2. 35)

We shall assume that 3¢, contains molecular po-
tentials dependent only on interparticle separations
and spin interactions such as dipolar coupling, so
that (2. 35) is always satisfied by 3C,. The Zeeman
Hamiltonian is invariant to rotations about the
direction of ﬁo, which we take to be in the z di-
rection. Therefore, for a im rotation about the

z axis, we get

Ful)=> <U ( il )'l v (z; : >77L,,(0)ma(t)>

=%,<7n,',(o)m; ), (2. 36)

with

U(kimm, Uk in) =m,; . (2. 37)

In general, a rotation of 6 about the z axis pro-
duces

U(k60)m, U(£6) ! =m, cosb +m,sind |

U(k0)m,U(k8) ™ = —m,sind+m, cosd , (2.38)
Uk6)m UE) =m, ,
so that in the present case we have
ml=m, , mj=—m,, mi=m, , (2. 39)
and consequently (2. 36) yields
Fo(t)=F (), Fu(t)=-F,(),
(2. 40)

Fof(#)=F f(t) =F 1i(t) = F o(t)=0 .

Therefore, there are only three distinct elements
of F,,(¢) that must be determined: F,,, F,,, and
F,,.

Similarly, a rotation of 7 about the y axis com-
bined with a reversal of the direction of ﬁo to ac-
commodate the Zeeman term will leave the Ham-
iltonian unchanged. Use of these operations then
produces the result

Fxx(t; H0)=Fxx(t; 'HO) ’

) (2.33)

F,(t; H))=—F,(t; —Hy) ,

(2.41)
Fu(t;HO)=Fu(t; _Hﬂ) ’

where the reversal of ﬁo is explicitly indicated.

It will be convenient to collect these results for
lat. - reference. Combining (2. 31), (2.32), (2.40),
and (2.41), we have

Fxx(t):Fxx(" t)zF:x(t) ,

(2.42a)
Fxx(t; HO)'—'Fxx(t; - HD) ’
ny(t)z _ny(_ t)=F:.;(t) )
ny(t; HO): _ny(t; _HO) ’ (2. 42b)
Fu(t)=Fn(_ H=FLt), (2. 42¢)

Fu(t; H0)=Fu(t; "Ho) .

Actually, we shall not try to evaluate these three
functions directly. Instead, it will suffice to de-
termine two somewhat simpler correlation func-
tions, as will now be shown. The Fourier trans-
form of Fg(¢) is

- 1 °
Fon(@)= o f dte"tF ()

=-1-’/ﬂd>\L °°dz‘e'i“"l (my(0)m (¢ +37N))
B, 2 J. y e e

8 w
1 a1 ciwrimy 1 ,
=3 A dre a7) dite V(m,,(O)m,,(th’)«))

8 o
=%L d)xe"“""-zlﬂj:” dte""”-:;,(m,,(O)ma(t)) . (2.43)
The last equality in (2. 43) is obtained by integrating
the analytic function e*“%m(0)m,(z)) around the
contour shown in Fig. 1 and applying the residue
theorem. The X integration in (2.43) may now be
carried out with the result

RIS il U (RS WS
ad Biiw 21 J. yye ey
(2. 44)
Because of (2. 31), it follows that
I?ab(w) = Fba( -w), (2. 45)

so that, after the appropriate changes in (2. 44), we
have alternatively

. Bhw _ «° 1
F,,,,(w)=~e~6—ﬁ;—1 —2—1; f @t n(hm0) -
(2. 46)

These results may be combined by first writing
them in the form
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(0,inN)

(0,0)

FIG. 1. Contour for the integral in Eq. (2.43).

2 sinh3 Bhiw
Phw

G(I/Z)ani’:“(w) =

X éln'-,/_; dte-iwt%’, <mb(o)ma(t» ’

(2. 47)

2 sinh} fhiw

(=1/2)Bhw 7 -
e Faplw) Bliw

s [ dt et o (1ymy(0)

-0

(2. 48)

and then adding the two equations. The result is

«

= 2 1
Fap(w) = 72~ tanh(z fiw) 5~ f dte™

X my(O)my(l) +mo(Om0) . (2.49)

Define now the (unsymmetrized) time-correlation
function of the spins:

Gop(t) = (1/V)imp(0)m,(2)) .
Then we have

A/ V)Xmo(B)my(0)) = (1/ V)i o(0)my( = 1)) = Gy - 1) ,
(2.51)

(2.50)

and so (2. 49) becomes

Fop(w) = (2/ Biiw) tanh (370) 5[ G p(w) + Gpo — w)] .

(2.52)

Now G,(#) will have the same symmetries as F,u(¢)
under rotations, Eqs. (2.40). Specifically, the xy
component will yield

Gyu(w) = = Gop(w) . (2.53)

_ With this addition, the equations for F,,, F,, and
F,, from (2. 52) are, explicitly,

F @)= 3 B)[Gg (@) + G - w)], (2. 54a)
Fry(@) = 3 B()[Gy () — Gy - )], (2. 54b)
F () =3 B0)[Gpp(w) + Gl -], (2. 54c)
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where

B(w) = (2/pAiw) tanh3 fliw . (2. 55)

If the frequencies of interest [i.e., where G(w)
is not negligible] are such that

fw<kT, (2. 56)
then
B(w)~1 (2.57)

and the Eqs. (2.54) may be simplified to this ex-
tent. This condition holds in most NMR experi-
ments; the simplification contributed by (2.57),
however, is not very helpful.
Finally, we introduce the combinations
M =My +imy,, M.=EM,—imy, (2.58)
and define the correlation function

G..(t)=(1/VXm,(0)m.(2))
= Gxx(t) + ny(t) + ‘L[G”(t) - ny(t)]

= Z[Gxx(t) +tiy(t)] ) (2- 59)
and similarly
G,.(8)=2[G(t) =9G4, (8] . (2. 60)

But from Eqs. (2.41) (with G replacing F), it fol-
lows that

G,,,_(t; H0)= G_;(t; —Ho) ) (2. 61)
so that we have
Gxx(t) = %[G-*(t; HO) + G-o(t; - HO)] ’ (Z 62)

ny(t)= —%’i[G_,,(t; HO) —G-+(t; —HO)] .

Thus, a knowledge of G., is sufficient to determine
both G,, and G,,. Additional symmetries of the
various correlation functions G and their trans-
forms can readily be obtained. In the following,
however, we shall explicitly need only one of these.
Writing out the trace as in (2. 32), we find that

Gap(—1)=G3 (1), (2.63)
from which it follows that
G.(-1)=GX(). (2.64)

Let us summarize the results of Sec. II. We be-
gan with the general problem of determining the nine
components of the relaxation tensor F(t) and found
that, when -ﬁo was in the z direction, it was only
necessary to evaluate three of these, F,(?), F(1),
and F,(¢), provided that 3¢, was invariant to spatial

" rotation. It was then shown that the corresponding

three components of the simpler correlation tensor
G,(t) gave the desired information. And finally, we
now find that we need to determine just the two cor-
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relation functions

G..()= 1/ VXm,(0)ym_(1)) = (1/ VXm *(0)m._(¢))
(2. 65)
and

(2. 66)
in order to completely solve the original task of
determining F,,(#).

Equations (2. 65) and (2. 66) have been written as
shown to bring out the fact that they are both auto-
correlation functions of the same general form. In
Sec. III, we present a general technique for the

calculation of autocorrelation functions of this form.

III. EVALUATION OF TIME-AUTOCORRELATION
FUNCTIONS

A. Liouville Operator

In Sec. II, we have shown how the calculation of
the macroscopic magnetization of a sample reduces
in the linear-response approximation, to the calcu-
lation of two time-autocorrelation functions of the
general form

)

G(t)= (1/ V)Xm*(0)m(2)) (3.1)
where

m(t) = eH%/ M et (3.2)
and

(my=0. (3.3)

Here m can be either m._ or m, and we shall use
this undifferentiated notation throughout Sec. III.

There are two distinct problems in the calcula-
tion of G(¢). First, one must determine explicitly
the time evolution of the fluctuation m(#) from some
given initial state, expressed formally by (3. 2).
This is a many-body dynamical calculation which
does not involve statistics. And second, one must
then perform a thermal average over all possible
initial states. This statistical averaging is done
over an equilibrium ensemble.

Of these stages, the first is the more difficult.
In the following paragraphs, we will show how the
dynamical problem of evaluating m(¢) may be re-
duced to the statistical one‘of evaluating thermal
averages. This, of course, is also achieved with
the straightforward moment expansion, with only
modest progress towards determining G(t) for all
times, since, in practice, only the first few mo-
ments can actually be evaluated. We shall see that,
indeed, the moment expansion is closely related to
the present method, but that the practical gain that
can be obtained from a knowledge of the first few
moments will be much greater.
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As noted, the dynamical problem is contained in
the calculation of m(¢), whose equation of motion
is, from (3. 2),

B’"Tt@ﬂ% [se, m ()] . (3.4)
Define now the Liouville operator

L=q/mpe, 1, (3.5)
so that (3. 4) becomes

aﬂatQﬂLm ®), (3.6)
which has the formal solution

mt)=e*m . B.7)

That (3.2) and (3.7) are identical can easily be ver-
ified by expansion of the exponential operators in
both cases, and term by term comparison of the
resulting series expansions.

Note that L is a linear operator that operates on
other operators, rather than directly on quantum
states. It is useful, particularly for visualization,
to introduce a Hilbert space of operators with the
inner product

@|B)=@A"B)

for arbitrary operators A and B, where A" is the
Hermitian conjugate of A, and the angular brackets
denote an equilibrium thermal average, as before.
This definition of inner product satisfies the usual
requirements

(3.8)

A |B)=B|A)*, @3.9)
@A +a,A;|B)=a¥@A,|B)+af@,|B),  (3.10)
(Ala)zo0, 3.11)

where a, and a, are arbitrary scalars and the equal-
ity in (8. 11) holds only if A is the null operator.
In this scheme, we will be able to discuss an oper-
ator A more graphically by referring to |A) as a
vector with a real positive norm (4 |4).

With the inner product (3. 8), L is a Hermitian
operator in the Hilbert space of operators, for we
now have

A|L |B)=(A'LB)= (1/h)(A'(3¢, B])= (1/7)([1c, A]'B)
=((LA)B)= B|L|A)* , 3.12)
as required. Furthermore, in this notation, the
desired correlation function is
G (t)= (1/V)(m (0) |m () (3.13)
= (1/V) (m©)]e** |m(0)) ,

and we see that what we are seeking is, in geo-
metric terms, the projection of the rotating vector
Im (£)) onto the stationary vector Im (0)), as a func-
tion of time.

(3. 14)



[

B. Moment Expansion

The moment expansion of a time-correlation
function offers one possible approach to its calcu-
lation. By expanding the exponential operator in
(3.14), we get

G(t):G(0)§ (;t,) M,, 3. 15)
where

G (0)= (1/V)(m (0) |m (0)) (3.16)
and

M"=M ) (3.17)

(m (0) Im (0))
The quantity M, appearing in (3. 15) and defined in
(3. 17) is just the nth moment of the spectral func-

tion

S(w)=G (@)/G (0)

1 © —iwt
L [T ateitcq.
27G (0) f _ae ®

This is easily seen by writing the inverse of (3.19)

(3. 18)

(3.19)

Gt)/GO)= [ dwe'tsw), (3. 20)
and expanding e'“ in the integrand. We find by
comparison with (3. 15) that
(" =[ldowS@)=M,. (3.21)

Actually, these are not the moments that are gen-
erally of interest in NMR calculations. Instead,
since S(w) is, in general, symmetrical about a
nonzero frequency w,, the central moments
{(w - wg)") are more directly useful. This feature
will emerge naturally from the following analysis.

The difficulty with the moment expansion (3. 15)
is that it is only slowly convergent, while the mo-
ments themselves become rapidly more difficult to
evaluate. In practice, therefore, the straightfor-
ward moment expansion is suitable only for calcu-
lating G (¢) for very short times {. A variation of
this approach, however, offers more general prom-
ise.

C. Orthogonal Expansion of |m(t)}

Let us return to the dynamical problem of evalu-
ating

lm @))=e**|m(0)) . (3. 22)

As noted above, one could simply expand the expo-

nential operator, producing a series expansion for
m (t) with an explicit time dependence:
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Y
imy=2 L |Lim) . (3. 23)
=0 J:
This expansion leads directly to the moment expan-
sion for G(t), which is not satisfactory. However,
(8. 23) provides a complete set of basis functions
IL'm (0)) for the representation of |m (£)). Since
we wish to compute the projection of Im (¢)) onto the
first, or j =0, member of this set, the creation of
an orthogonal set of basis functions from the given
set |L%m (0)) seems a natural approach. We use
the Schmidt orthogonalization process and define
0)= |m(0)),
0)= [m (0)) . , . 24)
, - LY 1m (0))
=LY |m(0))- 2 (k—-————
hy=1ilmON- 2 =G
Then |m (t)) may be represented in this basis set
as

|®) .

I @)= 22 4,001, 3.25)
where
_GIm@) X
and, in particular, where
Ao(t)=(7"(0)lm(f)) _G@) 3. 27)

(m(©)Im(©) G©) "

That is, the projection of the rotating vector Im (f))
on the first orthogonal function 10) is essentially
the autocorrelation being sought. Note that initially
the vector Im (t)) lies wholly in the [0) direction,
i.e.,

Ag(0)=1, A,(0)=0, j>0. (3. 28)

The coefficients A,(f) are functions of the time alone
and we can easily obtain an equation for their time
development from (3. 22). Differentiating this equa-
tion with respect to time and using (3. 25) on both
sides, we get

PR (1L |k)
Aj(t)"zlk/ Ak(t) (] I]) ’

(3. 29)
having used the orthogonality of the basis vectors
lj). Now, from the definitions (3. 24), it is apparent
that L will expand a vector |%) onto the subset of
vectors {Ik+1), k), ..., 10)}, and so we write

L|k)=|k+1)+§ Ty 1) (3. 30)
and, for the Hermitian conjugate,

#lL=@s1]+ 2 mhal, ®.31)
where the matrix I';, is to be determined. But for
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any vector | §), jSk, it follows that [use (3. 30) in
the first line and (3. 31) in the second]

GIL|R)=TuGli) 3. 32)
=G5+ 1D)0p,n+ T3y (G 10, (3.33)
so that
j+11j+1
T= (L—(j-é)i—)am,ﬁ 065 . 3. 34)
Now define the parameters
- jlLI1§)
w,=r,, =L 3.35
1=H= 0T (3. 35)
viEr‘,,hﬁ(J—‘Ll—U—”)—;o . (3. 36)

G 17)
Then combining (3. 30), (3. 34), and the two equa-

tions above, we find that L spreads [k) out onto
three successive vectors

L,k)‘:!k+1)+wk!k)+l/lzz_1|k—1), (3. 37)
and hence that
i IL |k
(J-(_’:—l—_-'i—))_=6j'k+l+wi5j'k+ V?G.hk'-l . (3. 38)

Inserting this result in (3. 29), we have the desired
equations for the A;(f)

- i“io(t)= WoAo(t) + V3A, () , 3. 39)

—iAj(f)=AJ-1(t)+ij;(f)+V§A;+1(t) , J>0.

These equations may be conveniently solved (at
least formally) in Laplace-transform representa-
tion. We write the Laplace transform of a function

ft) as

fe)= [ ater) . (3. 40)
Then, the transformed Egs. (3. 39) read
—ileAg2) - Ag(0)]= wodo ) + B4, (2)
(3.41)

—ilzA,@)-A,0)]=4,.46)+w;A; @)+ VjA,, ),
ji>0.

Now we can incorporate the initial values given in
(3. 28), obtaining finally an infinite set of simulta-

neous algebraic equations for the coefficients A i@):

iz + wo)Aoe) + B4, @) =i ,

. ) . . (3.42)
A@)+ 2 +0)A; @)+ 1V2A,@)=0,

or, in matrix notation,

4
izvwy W 0 ... A o) i
1 iz+w B 41@) 0
0 1 12+ Wy ees A, )] =| O
(3.43)
As noted earlier, Ay(?) is proportional to the
autocorrelation function G (£). Using Cramer’s
rule to obtain its Laplace transform from (3. 43),
we have, finally, the solution
G@R)/G(0)=Ank)=iD;&)/DoE) , (3.44)

where D) is an infinite-order determinant of the
form

iz+w;  vi 0
1 iZ+wyy Vi, e
D,(2) = 3. 45)
(2 0 1 iZ+Wsp o (

In principle, Eq. (3.44) is a complete solution to
the problem originally posed, in that it provides
an explicit expression for the Laplace transform
of G(¢) from which, by Laplace inversion, the auto-
correlation function at all times may be found. In
practice, of course, one must contend with the
fact that, as with the moments, only a few of the
coefficients w, and v will actually be known, so
that at some point approximations are inevitable.
The advantage of this formal solution, however,
lies in the guidance it can give to the selection and
systematic ordering of possible approximations,
and the efficient use it can make of the actual in-
formation available. These comments will be
clarified in the following sections.

Before continuing, it is necessary to give the
ratio of infinite determinants appearing in (3. 44)
a more precise meaning. This may be done by
returning to the original expansion of | m(t)), Eq.
(3.25), and considering a finite version, whereby
only the first n+1 orthogonal vectors are used to
represent | m(#)), i.e.,

| m(8)) ™= ’Zo A9 . (3. 46)

The previous solution will then be recovered in the
limit as # goes to infinity. Proceeding from (3.46)
exactly as before, we now obtain a solution for
Ay(2) as a ratio of finite determinants

AP (2)=1 D™ (2)/ D" (2) (3.47)

where



4
iz+w; v2 0 0
1 dz+wy, v, 0
DM(z)= 0 1 iz+wgg 0

. . . .
. . . .

12+ W,
(3. 48)

The infinite-order solution is then obtained by de-
fining

D,(2) _... DM(2)
Dole) IR B () -

Note that, for any finite n, ®;™ (z) is a polynomial
in z of degree n+1 —j, so that the denominator in
(3. 49) is a polynomial of one degree higher than
the numerator, a fact which determines the as-
ymptotic form of the ratio. That is, for large z,
(3. 44) becomes

(3.49)

A2)~1/z, z—=w. (3.50)
This is consistent with the obvious fact that
Aot) - 1. (3.51)
=0

D. Memory Function and Continued Fractions

By expanding in minors of the first row, one
easily obtains a recursion relation for the deter-
minants D, (z):

(3.52)

Applied to the denominator in (3. 44), this rule pro-
duces the form

é(z) _ iiDl(z)

G(0)  (iz+wo) Dy(2) - v Da(2)

D;(2) = (iz+ W) Dy(2) = V7D 1a(2)

Tz —iwo*'l/g];::Dz(Z)/fDl(a) Tz —iw01+k(z) ’
(8.53)

where we have put
K (2)=v§ iDy(2)/24(2) . (3.54)

The role of this function may be seen as follows.
Rewrite (3.53) in the form

26 (2) - G(0) = i woG (2) - G(2)K(2) , (3.55)
and perform a Laplace inversion to get
3
L0 _jwe(n - f AW KE-1)G{H) .  (3.56)
0

That is, K(f) is a memory function of the dynamical
system, giving the weight to be assigned to pre-
vious values of G(f) in computing its present rate
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of change. Clearly, a knowledge of K(¢) completely
determines the autocorrelation function G(f). The
memory function defined in (3. 54) is, of course,
no easier to determine than G(z) itself. However,
as will be shown later, it is less sensitive to ap-
proximations, so that Eqs. (3.54) and (3. 56) are
a convenient point of departure for approximate
solutions of G(¢).

Alternatively, one may relate G(¢) and K (¢)
through their Fourier transforms. We note first
that since

Glw) = (1/2n) [ ate *“'6(t) ,
we may write

Glw)=(1/2n) [, dile™“G(t) + e*“*G( - 1)]

(3.57)

= /2 [ ar{le“*G(D)]+ [t c()]* }

=(1/2m)[ Glw)+ G* (iw)] = (1/7) ReGliw) ,

(3.58)

where we used Eqs. (2.63). Since the Laplace
transform G(z) is defined only for points z in the
right half plane, i.e., Re(z)>0, G(iw) should be
understood in the sense of a limit from the right-
hand side:

G(iw)=lim G (€ +iw) . (3.59)
e=0"

Then, from (3.53), we have

Gliw) = [i(w - wg) + K(iw)]™*, (3.60)
where

R(iw)= [ ate ™ K@) =K' () =iK" () ,

(3.61)

with the real and imaginary parts given by

K'(0)= [~ dtK(#)coswt , (3.62)

K" (@)= [7ditK(f) sinwt . (3.63)

Using (3. 61) in (3. 60) and taking the real part of
the result, we get, finally,

E(w) = 711_ G(0)K' (w)

[w=wy—K"(w) B+ [K (0 ’
(3.64)

from which it is seen that the imaginary part
K''(w) leads to a shift in the spectral line originally
centered at w,, and the real part K’ (w) accounts
for a broadening of the line. In this form, a know-
ledge of the memory function leads directly to a
solution of the line-shape problem of G(w) and
hence to that of the relaxation function F(w) through
Egs. (2.54) and (2.62). In Sec. IV, we shall con-




1416 LADO, MEMORY, AND PARKER

sider several approximations for the memory
function K(¢).

Repeated use of the recursion relation (3. 52)
leads to an expression for G(z) that lends itself to
systematic approximation. Beginning with

G(2) = G(0)i Dy(2)/Do(2) (3.65)
we saw that use of (3. 52) produced the form
B(2) = ¢l (3. 66)

z —iwg+v3iD,(2)/Dy(2) °
If y(z) is again expanded using (3. 52), we get
_G(0)

vg - (3.67)
Zz—iwy+ V%iﬁ)g(z)/a)z(z)

G(z) =

2 —iwg+

Continuing in this fashion, repeated use of (3.52)
on the determinant in the denominator produces an
infinite continued fraction for G(z),

G(0)

é(z) =

L2

z —iwg+ 0 » (3.68)
2

Vi

Z—iwg+.

2 =iwp+

which was first obtained by Mori.® A similar rep-
resentation can be given for the memory-function
transform K(z) and indeed for any ratio i Dy,,(z)/
D,(2).

E. Orthogonal Polynomials

What has been done in the previous sections
amounts, in practical terms, to a recasting of the
original problem in a new form that may be more
suitable for motivating approximations, rather than
a computable solution in itself. In particular, the
new form is one that is well known in mathematical
analysis as the classical-moment problem and is
intimately connected with the general theory of
orthogonal polynomials.® Indeed, the finite deter-
minants D'’ (z) constitute, as will be shown below,
the orthogonal polynomials characteristic of the
problem, In this section, we will consider several
general properties of these polynomials.

The determinants D¢'’(z), defined in (3. 48), satis-
fy a recursion relation similar to (3.52) which
may be obtained by expanding in minors of the jth
row or column

D§(2) = (iz+w)DF(2) -vi, 9§ (2) .

(3.69)
The lowest-order polynomial defined by (3. 48) is
D (2)=iz+ wg, (3.70)

and for convenience of notation we adopt the con-

[ >

vention that

Dg(z)=1. (3.71)

We now note that (3. 69) is formally similar to the
recursion relation of the orthogonal functions, Eq.
(3. 37), which can be written

|7+ 1)=@ - wpli)-viali-1). (3.72)
When supplemented with the first two vectors from
3.24) ,

|0)= |m (0))

(3.73)

)= @ - wo) [m (0),

Eq. (3.72) can be used to generate the remain-

ing vectors. But the vectors [0) and [1) evidently
can be written

|0)=D§" GL)|m (0)),

3.74

[1)=~D{" GL)|m (0)) .79
and if we put, in general,

[7)= (= 1'Dg"™ GL)|m 0)) (3.75)

then the recursion relation (3. 69) for the determi-
nants reproduces (3. 72) for the vectors. It follows,
therefore, by mathematical induction that all the
orthogonal vectors can be written in the form (3. 75),
where D’ (L) is a Hermitian polynomial operator.
As will now be shown, the polynomials D¢’ (z) are
themselves orthogonal. We note in passing that,

in this view, the expansion (3. 25) is an expansion of
the exponential operator in orthogonal polynomial
operators, ‘

el =ij:)) 1Y A,BDyV6L) . (3.76)

The orthogonality of the D¢” (z) may be proved in
the following way. We have constructed the basis
set |j) so that

Cli)=0G19)64; - (3.77)

Now using (3. 75) and the Hermitian nature of L, the
left-hand side of (3.'77) may be written

€13)= D™ ©) D GL)DE ™ GL) |m (0))
- 1) ) 1/2m)  dzDfV 10§ @)
(o]
x (& —iL)™ |m (0))

1™ dz DD (z)p G
= omi czﬁbo @)Dy (k)

x (m (0)| @ - L) |m (0))



|

e k-
FIG. 2. Contour for
the integral in Eq. (3.78).
1) A (1-1) (-1
= V] dzG @)Dy @)Dg"™ ). (3.78)
c

In obtaining this result, we made formal use of
Cauchy’s integral formula and recognized that

Cr)=f,"dte G (t)=(1/V)],” dte  (m (0) [e*F |m(0))

=(1/V)m(0)| @& -iL)*|m(0)) .

The contour C of the complex integration is shown
in Fig. 2. When (3. 78) is equated to the right-hand
side of (3.77), we get the desired result:

3. 79)

o [ az G0 @) - LI,
=(j+1|j+l) (V1FD) (0|0)5
Gl G-1i-1 v Y

(3. 80)

(g ) 08y .

That is, the determinants D{’’(z) constitute orthog-
onal polynomials in the complex plane with weight
function G 2)/G(0). The polynomials could be nor-
malized by dividing each D’ @) by v, .

The orthogonality integral may also be written in
real terms. To do this, we need a relation between
the Laplace and Fourier transforms of G () which
is proved in the Appendix, namely,

G(z)f dw—2 G(“’)

Then inserting this result into (3. 80), we get

® = 1
d \
j:m WE (@) 5 J; dz

_ f " 4w G (@)D (@)D (o)

©

Re@)>€ . (3.81)

9" @)0{" @)
2—-ijw-¢

(3. 82)

in the left-hand side, having again used Cauchy’s
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integral formula and having taken the limit of van-
ishing €. The orthogonality relation (3. 80) thus
becomes

© - J
f dw G(w)ﬁ)é”(iw)ﬂ)é”(iw):(r% u§>c(0)5,, ,
” 3. 83)

so that the real polynomials ®§”’(w) are seen to be
orthogonal with respect to the weight function

G(@)/G(0).

F. Coefficients w; and Viz ; Approximants

Given the close connection between the moment
expansion and the orthogonal expansion, it is to be
expected that the coefficients w, and v} of the latter
are closely related to the moments M; of the former.
The explicit relation is presented in this section.

Define the Hankel determinant

1 My ... M
My, M, oo My,
D,=|. . . -

. . . .
° . . °

M; My, oo My

(3. 84)

where the M, are the moments defined in (3. 17) and
(3.21). It is shown by Akhiezer® that, in terms of
these determinants,

v2=D,,D;,/D%, (3. 85)

from which it is evident that v% depends on the first
2j + 2 moments.

The w; are given by (3.35). This expression can
be somewhat simplified as follows. From the gen-
erating equation (3. 24), we have

(E1L10)

wn LA

L|j)=L”'1‘0)—:Z-§)

(R1L™10) (k1L?10)
1”1)"22, wm P E e LB

(3.86)

By iterating this equation for L|k) once, we bring
out all the dependence of L|j) on |j), which leads
to

_GILl) _ G1Ltio) - (i-11L710)
1) (719 (j-11j-1) ’
(3.87)
or, by successive applications of this result,
: Lj+1 J-1
_UIEMIO 5, (3.88)

i) =0

Thus, w; depends on the first 2j+1 moments.
Explicitly, the first few coefficients are
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- 2_ 2
Wo=M; , Vo=M,-M7,

My — M, M

W, = VOZ - W, (3.89)
M, - M?2

vi= T - v e)”

In connection with these relations, we note that
D§”(2) contains the moments M, up to and including

Mpy,,;. By expanding in inverse powers of z, it can
be shown?® that
DR 1 M My, 1
lggﬂzz—)-;+;2k+ ~+ —HE 0 z_sz)
(3.90)

That is, this ratio is an approximant of é(z), giving
correctly the first 2j+ 2 terms of the moment ex-
pansion of G(¢).

The first moment M, = w, gives the center of the
distribution G(w). In many cases, this distribution
is symmetric about w,, so that the central moments

PRY)
M= (- )= QLE=L10)

vanish for j odd. For such cases, all the w,; are
identical:

(3.91)

w;=w, forallj. (3.92)

This is evidently so for w;, which from (3. 89), may
be written

Wy = wy+ My /My=w, , (3.93)

since My=0. Assume (3.92) is correct for
@y, ..., w;;. Then, using (3. 35) and (3.75), we
have

_ OIL[Dg-1GL)]*10)
7 (01[oF(L)E10)

(O - w)[DYV GLY]| 0)
©IDYDGL)EI0)

But D§/-1’(iL) is a polynomial in (L - w,), so that
the operator in the numerator in (3. 94) will appear
as a sum of odd powers of (L - w,), leading to a
sum of odd central moments which vanish. Hence,
if (3.92) is valid for w,, it is thus valid for all w,.
It is convenient for these cases to introduce the

simpler correlation and memory functions G, (f)
and K, (¢), defined by

=Wy + (3.94)

GH)=e' "G, (f), K@®=¢"K,(),  (3.95)
so that, from Eq. (3.56),
t
%;(t) - -f @' K,y (¢ - 1")G,(t") . (3. 96)

0

In terms of the Laplace transforms, these relations
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are
G+ivg=6,(), R@+iv)=K (), (.97
and
G1(2)=6,0)/[2+ K, (2)] . (3.98)

The results obtained in previous sections for G(¢)
and K(f) can be applied to G,(f) and K, (f) merely by
setting all w, to zero and interpreting the moments
in (3. 84) for »% as central moments.

IV. APPROXIMATE EVALUATION OF TIME-
AUTOCORRELATION FUNCTION

A. Approximate Memory Functions

In Sec. III we have presented a formal solution
to the problem of calculating time-autocorrelation
functions. Like the moment expansion from which
it is descended, this solution requires a knowledge
of all the moments of the corresponding spectral
function, clearly a hopeless demand. In contrast
to the moment expansion, however, the present
formulation is able to make efficient use of those
few moments that will in practice be available. In
addition, the formalism may suggest specific func-
tional forms for desired correlations, containing
perhaps a small number of parameters which,
though not obtainable from within the formalism,
may be readily gotten from experiment.

In Sec. IV B, we will consider one possible res-
olution of the practical difficulties arising from the
limited data available, based on a perturbationlike
calculation. In the present section, the problem
will first be approached by constructing approximate
models of the memory function K(f). In both sec-
tions, we shall assume for simplicity that G () is
symmetric about w=w,, enabling us to use the
simpler functions G, (f) and K,(f) of Eqs. (3.95) if
desired.

Equation (3. 96), relating the correlation and
memory functions, provides a solution for the
former once the latter is known. Clearly, what is
wanted here is a second, albeit approximate, equa-
tion expressing K, (f) as a functional of G,(t), so
that (3. 96) becomes a nonlinear integral equation
for the single unknown G, (f), whose iterative solu-
tion then generates an infinite sum of contributions
which approximates the moment expansion to all
orders. With the exception of the system of equa-
tions obtained by the Prigogine school,? which are
limited by severe mathematical difficulties, such
a procedure is not yet available, and in the follow-
ing we consider only various explicit forms for
K, (#) not depending on G, (¢).

The simplest of these corresponds to the solution
of the Bloch equations and may be motivated as
follows. The area under the normalized correlation
function G,(#)/G,(0) is given by its Laplace trans-
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form G,(0)/G,(0) evaluated at z=0. From (3. 98),
it is seen that this area is inversely proportional
to that under K, (f), suggesting that if G,(¢) is rela-
tively long ranged, then K,(f) will be comparatively
short ranged. Proceeding on this assumption, we
note that K, (¢ - ¢’) in (3. 96) will be significant only
for times ¢’ near ¢, so that we might approximate
the integral by writing (Markoffian approximation)

dG, (f) z—Gl(t)ft dt'K, (- t') == G, (R, (0)
0

dt
4.1)
for sufficiently long times {. In this approxima-
tion, therefore, G,(t) is an exponential function

G,(t)=G,(0)e*’'T, t>0 4.2)

with a decay time T'= [,(0)]"!, and correspondingly
the line shape G(w) is Lorentzian

TG(0) 1

T 1+ (w=-wy)2T? *

4.3)

Since it depends on all the moments, the decay time
T is not computable here and must be obtained from
experiment.

It is evident that (4. 1) corresponds to approxi-
mating

R, (2) =D, (2) /D, (2)

G(w)=G,(w - wy) =

4.4)

in Eq. (3.98) by its limiting value at z=0. [The
determinants D,(z) here are to be understood ac-
cording to the comments in the last paragraph of
Sec. IIIF.] This is the first of the sequence of
“long-time approximations” of Mori,® obtained in
general by neglecting the z dependence of the ratio
13D ,,5(2)/D,,,(2). Thus, in the next approximation
with j=1, we write for the Laplace transform of
the memory function [Eq. (3.67)]

R (2)=1v3/(z+ ) , 4.5)
where, in general,

7\1 = iV3 501»2 (0) /ﬁ)j#l (0) (4- 6)
or, in this case,

M=K )] =13 T . 4.7)

This leads to an exponential memory function

K ({t)=vie™ | t>0 (4.8)

and, depending on the numerical values of v, and
T, the correlation function may in this case display
an oscillatory behavior. We have, from (4. 5),

AN 2+ N _ Gy(0) [+ Nzt
G1()=G1(0) 22 Nz+ V2 zZ, -2 \2-2, z—z_)’

4.9)
with
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Ry== %Ali%(xi'&/(z])l/a ’ (4-10)
so that, by Laplace inversion,

G, =[6,(0)/z, - 2 ][(2,+ N)e™ = (z.+ \)e™] ,

t>0. (4.11)
If vy and T are such that
M _avi==-407<0,
then (4.11) becomes

G,(t)= G, (0)e~*/#M! [cosat+ (A, /2a) sinat] , >0
(4.13)

4.12)

a damped oscillatory function.

Higher approximations can be found in the same
way. In order to apply the approximation (4.6) for
a given j, it is necessary to know vZ, v, ..., 0%,
and the decay time T.

Equations such as (4. 2) and (4. 11) cannot be cor-
rect, in general, since their expansions contain
odd powers of ¢, whereas the odd central moments
of G(¢) all vanish, by assumption. A convenient
one-parameter model of the memory function which
correctly incorporates this property is the Gaussian
memory

K,(t)= 12 &Rt | (4.14)

studied by several authors,?2-2* The constant B is
usually chosen so that the resulting correlation
function G, (f) yields the correct fourth central
moment M,. Borckmans and Walgraef?*'?® have
shown that in the long-time limit, Eq. (4.14) leads
to a damped oscillatory correlation function of the
form of (4.13).

Finally, using the method of retarded Green’s
functions, Mansfield®® has shown that satistactory
agreement with experiment for solid CaF, can be
obtained by taking, in effect,

K,(®)=vio(r-1), (4.15)
where 6(x) is the unit step function
1, x>0
9(")'{0, x<0 (4.16)

and T is a correlation time determined from the
first two even moments of G, (w).

The generally good agreement with experiment
which is obtained using the exponential, Gaussian,
or step-function memories discussed above suggests
that, at least in the case of the fluorine resonance
insolid CaF,, the correlation functionG,(#) is not very
sensitive to the detailed shape of the memory func-
tion K, ().

B. Perturbation Expansion for G, (z)

Usually, one knows about the spectral function
G,(w) to be calculated its approximate shape in
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terms of simple functions and its first few mo-
ments. In this section, we consider one way, es-
sentially a perturbation-type expansion, in which
this limited information might be used to construct
an approximate solution.

Suppose, . for example, that G,(w) is known to be
approximately Gaussian. The coefficients v? from
Eqgs. (3.84) and (3. 85) (with the M, interpreted as
central moments, so that M,;=0 for odd j) may be
written

vi=Mj ,
M, - 3M,?
u‘§=zMz'+[J—,2— , 4.17)
M,
M'M'—M'z—3M'2M’+3M'4]
2_ ’ 2 Mg 4 g My 2 te.
Vs 3M2+l: MO0 - M) , etc

If G,(w) were precisely Gaussian, each of the brack-
eted expressions in (4. 17) would vanish. More
generally, however, if G,(w) is approximately Gaus-
sian, these terms are expected to represent small
corrections to the initial (Gaussian) term of u?.

This suggests writing, for the general case,

V2=v524 0, , (4.18)

where V}’z are the coefficients corresponding to the
‘“unperturbed” case (e.g., the Gaussian) and the
6, are (presumed small) correction terms, and
where we are seeking a suitable expansion in powers
of 6;.

Such an expansion may be obtained for the Laplace
transform

6, . D)
G,(0) ~ M L 5,

by means of a generalized recursion relation of the
polynomials D{”(z). In addition to the relations

(3.52) and (3.69) already given, Muir and Metzler?
show that these polynomials satisfy more generally

(4.19)

Di" (2) = 0§ ()04 (&) - Vi DI ()DR3(2) (4. 20)

for jSk<n, where the convention

DM(z)=1 . 21)

has been adopted for the sake of a more uniform
presentation. Equation (4. 20) includes (3.52) and
(3.69) as special cases.

We will need temporarily a hybrid determinant
D{")(2) which is defined to contain the unperturbed
v9? for j<iSs and the complete % for s<i<n.
Then, choosing k=3 in (4. 20), we write

DI(z) = DP(2) DEz) - 52+ 8,) D (2) Dfile)

=D")(z) - 6,95 ¥ (2)D")(2) , (4.22)

AND PARKER 4

where a superscript degree mark on D will identify
a determinant containing only unperturbed v%.
Continuing, the same operations are now performed
on the hybrid determinant of (4. 22) with the choice
k=j+1, which gives

¢ (n)
3);")(2) = 3)3({;1 )(Z):D;?z);j(z) - (V;»«zl + 51:.1)5)1’;}(2)3)1:8”

-5, 4 ()0 7(z)

i+l
=DM 1 (2) - 52‘3?“'“(12)9;‘?%(2)5: . (4.23)

Continuing in this way successively through =% -1,
we obtain a discrete analog of an integral equation
for D™(2)

n-1

DM(z) = D;"(2) - g:&);"‘-‘ N2)DM(2)6; . (4.24)
i=
This equation may then be solved iteratively, giving

the desired expansion of D}")(z) in powers of the

corrections §; :
( S ot
DiM(z) = D} ™(z) - D5 D]R(2)8,
i=j

n-1 n-1

+2 Zz D ()D& (2)De 38,8, — 0+ .
i=j k=i+

(4. 25)

This yields a representation of él(z)

é1(‘2) + O od o(i=1) o
=107 (z) — D Dy, Os4oee
G,(0) Dy (2) EEE 1 (2)D5,2(2)5; +

©

X DF(2) = 2. DG(2)D3,5(2)8;++ + + (4. 26)
i=0

(having passed to the limit of infinite ) suitable
for approximations. These can be made systemati-
cally by simply neglecting all corrections §; for j
greater than a given integer.

Thus, including only the first correction 6, we
get

(il(Z)z i 3);(2)
G1(0) " D5 (2) - D3 (2)8o

=i D7 (2)
D (2) - (8,/v3?)[izDs (2) — D5 (2)]

36 (a)
2G5 (0) - 261 ()6 °

(4. 27)

where we have used (3.52) to eliminate D;(z). It is
easily verified that (4.27) yields the correct asymp-
totic form (3. 50), that is, G,(¢) obtained from this
equation is exact for short times. The approxima-
tion appears in the predicted long-time behavior.
The asymptotic form of this long time G;(#) can be
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obtained from (4. 27) by locating (numerically if
necessary) the root of the denominator with small-
est real part.

Equation (4. 27) can alternatively be written, by
Laplace inversion, in the form of an integral equa-
tion for G,(#):

Gy(2) _ Gl(t)
G0 G "

f a’ ,(t)c,<t ')
G;(0) G,(0)

(4.28)
where the dot denotes a time derivative.
Similarly, the next approximation, where only

8, and 8, are retained in (4.26), yields, after some
simplification,

Gy (z) . (v32% + 2%6,) G3 (2) = 26,G5 (0)
G,(0)~ (V3vi% - 2%6,)G5(0) + (vg 26, — V326, + 226,)2G1 (2)
(4. 29)
or, after Laplace inversion,
o 4 Git) G G (1)
G,(0) 132 G;(0) " vgPvi® Gi(0)
_ ‘dt,(vozuf—uovlzol(t ), 0 Gi ))
0 ngvfz Gl (0) VSZVTZ G1 (0
Gy(t-t")
— . 4,30
Q) (4.30)

These equations reduce to the previous (4. 27) and
(4. 28) upon setting 6, to zero.

If higher coefficients are known, additional cor-
rection terms can be incorporated in the same
manner. These equations are amenable to numeri-
cal solution.

APPENDIX

In Eq. (3.58) it was readily shown that the Four-
ier transform of G(#) could be obtained from the
corresponding Laplace transform. Here we wish
to demonstrate the inverse, that the Laplace trans-
form of G(¢) can be expressed in terms of its
Fourier transform. This relation was used in ob-
taining the orthogonality condition (3. 83).

Let z be a point contamed within the contour C
of Fig. 2. Then, since G(z) is analytic in the right
plane, Cauchy’s integral formula gives
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Clz) = G (2
G(Z)_Zm‘j;dz z' -

1 Gle +iw) (A1)

“omi z=(e+iw) ’

where we have used the fact that f}(z) vanishes along
the semicircular path as the radius becomes indefi-
nitely large. Now, the real and imaginary parts

of @(e +iw) satisfy the Kramers-Kronig relations,
so that, in particular,

ReG(s +iw )
-

ImG(e +iw) =%6’f dw’ (A2)

-0

where @ denotes the Cauchy principal value, and
hence,
f dw ImG(e +iw)

- =lf dw’Reé(e+iw’)
z-(e+iw) 7).

x(l’./wdw 1
. [z=(e+iw)(w' - w)

o dw,ReG(th:v '). (A3)
. z—(e+iw’)
This last equality follows from the integral
dg
f (E-z+¢€)(E-iw')
c
m'
~<P./- (zw—z+€)(w W)~ —z+€’ (A4)

where the contour C’ is along the imaginary axis,
excluding the point iw’, and closes in the left-hand
plane, so that all singularities are excluded.

Then writing G(€ +iw) in (Al) in terms of its real
and imaginary parts and using (A3), we find that

R 1 [~
G(z)—ﬂL dw

so that Eq. (3.58) now provides the final step in es-
tablishing the desired result, Eq. (3.81).

Reé(e +iw)

z-(e+iw) ’ (45)
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Oscillator strengths of the transitions from 887 /2 to some of the 8p, 61, and ®D multiplets
at a Cy, symmetry site in SrF,: Gd* have been measured experimentally and compared with
calculations using the Ofelt-Judd theory. Calculations using crystal-field wave functions for
the 6P-,/z and 6P5 /2 spectra showed that J mixing is negligible and, in agreement with Zeeman
measurements, the transitions are predominantly magnetic dipole. The °I transitions are
predominantly electric dipole and the intensities are in good agreement with theory. The
line-strength parameters T) are 3.4 +0.1, 1.05+1.05, and 12.2+0. 05 cm X 101 for A= 2,

4, and 6, respectively.

INTRODUCTION

The alkaline-earth fluorides doped with trivalent
rare-earth ions offer a unique opportunity to test
line-strength calculations. The cubic site possesses
inversion symmetry and allows only magnetic
dipole or electric quadrupole transitions. This
site is formed when the rare earth, located at a
divalent cation site, is charge compensated by a
negative ion more than two lattice constants re-
moved. ! At a site of axial symmetry, which lacks
inversion, the odd components in the multipole
expansion of the crystal field introduce opposite
parity into the states of f", and electric dipole
transitions may occur.

Thus the magnetic dipole strength can be studied
independently of the combined electric and mag-
netic dipole transitions. An analysis of the °P
transitions for the cubic site observed in CaF,:Gd*
has been reported. 2 In this paper the electric
dipole contribution observed at a site of C4, sym-
metry in SrF,:Gd* is analyzed according to the
Ofelt-Judd theory. *

OUTLINE OF CALCULATIONS

The calculations wiil be given in outline form
here since the original paper by Judd* gives an
excellent description of the theory. The contri-
bution to the oscillator strength due to magnetic
dipole transitions is given by

__Th
D" 3me

o syl | L+ 28] [ [aLsT])]?.

The average energy of the transition is 7, »n is the
index of refraction, and the other constants have
a value of 4.028%x10°% cm. The reduced-matrix
elements are given for AJ=0 by

(aLSJ| |L+gsS| |ozLSJ)= [JT+1)]V2g |

where g is the Landé g value given by the formula

JJ+1)-L(L+1)+S(S+1) ‘1
2J(J +1)

g=(gs—1)

The gyromagnetic ratio of the electron, g, is
2.00327. For AJ=-1,



